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Motivation
• The Ancestral Selection Graph (ASG) is a branching-coalescing random graph that contains 

within it all the possible genealogies of a sample under selection. As a result, this graph explodes in 
size with larger samples and stronger selection. 

• But, with the development of methods for fast & accurate estimation of ARGs and numerical 
Wright-Fisher diffusion, we can quickly compute likelihoods under a model based on the ASG. 

Methods
• Stephens & Donnelley, 2003 present a general method to approximate the posterior distributions 

of genealogies using importance sampling to compute stationary distributions under the ASG.
• Here, we sidestep this expensive scheme by assuming an infinite sites model and replacing 

their stationary transition probabilities by transitional probabilities conditional on the age of 
the mutation. 

• Then, we apply this general maximum-likelihood framework to estimate selection coefficients 
given the age of mutation under any demographic history. 

Results  

Ancestral Selection Graph (ASG) (Neuhauser & Krone, 1997)
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1. Incorporate importance sampling scheme to account for tree 
estimation being performed under neutral prior (using ARG-based 
methods)

• Selected alleles tend to be younger than their neutral counterparts

2.  Perform estimation in a complex demographic history (for 
example, two-population model with migration)
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2. Follow the multiple paths down from “Ultimate Ancestor” (UA) to determine 
the true genealogy of the sample (assume additive fitness with symmetric 
mutation)
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Neutral case reduces to the n-coalescent with no branching events

Our model

Now, if we have a tree that records the coalescent event between pairs of samples, we show that we do not need to know the 
branching rate to compute the likelihood for a given value of selection. This calculation essentially averages over all the possible 
virtual lineages at each generation. 

Results
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t = T (age of mutation)

Constant size case Changing size case

Simulations in mssel (Hudson, 2002) across 50 replicates conditioned on segregation in a sample of 40 haploids after T generations:

Conditioning on the age of the mutation allows us to calculate per-generation transition probabilities in the sample using 
forward-in-time Wright-Fisher diffusion (and this also means we can set r(M) = 0). We are now left to calculate the coalescent and 
branching rates. To do this, we use an approach in which we construct an age-conditioned SFS (acSFS).  
If Φ!

! represents the expected SFS of de-novo mutations in generation T (mass in the singleton bin of "#
$%

, zeros everywhere else), 
then we can evolve this acSFS forward up to the present day using a probability transition matrix Ξ derived from moments 
(Jouganous et al, 2017) that captures the effects of drift and selection. 

1. Go back in time from n=4 present-day samples and place 
branching, coalescent & mutation events (stop when left with 
single lineage) UA = A1 UA = A2

A2 è A1

A2 is more fit 
than A1

Mutation event M
(rate prop. to mutation rate)

MRCA

Stephens & Donnelly, 2003 model
Derive the rates of these events as ratios of sampling frequency 
distributions at stationarity 𝜋!"(. ) of a Markovian process. 
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Example tree

A1 A2 A2

In general, rates are multiplied by the number of opportunities, so if we 
have it derived lineages at generation t,

Coalescence in the 
ancestral class

Coalescence in the 
derived class

(i0, n0) = (2, 4)

No coalescent event (it, nt) = (i0, n0)

We can now approximate the stationary distributions in 
Stephens and Donnelly, 2003 with appropriate entries 
in the normalized acSFS above. 

Final likelihood: 

Sample allele frequency i/n
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Stack of acSFS for a particular selection strength & demography

Coalescent rates in the derived 
and ancestral alleles: 

Two types of branching events: 

Example stationary 
distributions

Rate of mutation along a 
branch: 

A1 è A2

A2 A2 A2 A2 A2 A2 A1 A1

Human-like exponential 
growth scenario

Simulated selection coefficient s
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Estimates are downward 
biased for strong selection 
(s >= 0.01) with both methods. 

Frequency 
trajectory

True tree

(If these rates ≪ 1, which is a valid approximation since they’re per-generation, we can approximate the probability of an 
exponentially distributed event with this small rate to be equal to the rate of the event)

T generations

Tgenerations
This normalized acSFS is just the probability of 
seeing it copies out of nt at time t given a selection 
coefficient s. Then, the per-generation rate is:
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