Joint estimation of DFE and time-varying mutation rates using paired data of allele frequency and allele age
Vivaswat Shastry ${ }^{1}$ and Jeremy Berg²
${ }^{1}$ Committee on Genetics, Genomics \& Systems Biology
${ }^{2}$ Department of Human Genetics
University of Chicago, Chicago IL
vivaswat@uchicago.edu
Introduction

- Typically, selection coefficients are estimated using allele frequency information from the site frequency spectrum (SFS)
- But, can we gain more information about selection \& mutation parameters by exploring the correlation structure between frequency and age in the form of the site frequency-age spectrum (SFAS) i.e., incorporating more information about the trajectory of these alleles? Methods
- We use forward-in-time Wright-Fisher diffusion to compute the expected SFS \& SFAS (moments from Jouganous et al, 2017) under a specific set of parameter values
- Estimation of parameters is done via a maximum-likelihood framework using a Poisson likelihood on data simulated with PReFerSim (Ortega-Del Vecchyo et al, 2016)

Results

- We find a modest shrinkage of $\mathbf{5 - 2 5 \%}$ in variance when estimating selection coefficients and a huge improvement in accuracy of $\sim 10 x$ when jointly estimating selection coefficients and time-varying mutation rates using paired data of allele frequency \& age versus frequency alone

Frequency only approach using SFS

$$
\mathcal{L}(\gamma ; \mathbf{X})=\prod_{i=1}^{2 n-1} \operatorname{Pois}\left(\mathbb{E}\left[X_{i} \mid \gamma, \theta\right]\right)
$$

Frequency \& age approach using SFAS

Shape of SFS \& SFAS under varying strengths of selection

(MLE value, 100 replicates)
...but adding ages gives us (slightly) lower variance!

Higher discriminability in data sets containing two similar selection coefficients

Glossary:

N_{e} effective population size
$\gamma=2 N_{e} s$ population-scaled selection coefficient
$\theta=4 N_{e} \mu$ population-scaled mutation rate
Assumptions:

1. Allele ages estimated without error
2. Point DFE (distribution of fitness effects)
3. Constant population size
4. Unlinked loci

Joint estimation of selection coefficient \& time-varying mutation rate

$$
\mathcal{L}(\gamma, \theta ; \mathbf{X})=\prod_{a=1}^{A} \prod_{i=1}^{2 n-1} \operatorname{Pois}\left(\mathbb{E}\left[X_{i, a} \mid \gamma, \theta\right]\right)
$$

Huge improvement on adding ages

Which SFAS comes from a two-epoch history?

Future directions

1. Incorporate importance sampling scheme to account for age estimation being performed under neutral prior (using ARG-based methods)
Selected alleles tend to be younger than their neutral counterparts
2. Apply joint estimation procedure to families of transposable elements (TE) in maize (Stitzer et al, 2021) to estimate timevarying rate histories
References
Maruyama, T. (1974). The age of an allele in a finite population. Genetics Research, 23(2) 137-143.
Jouganous, J., Long, W., Ragsdale, A. P., \& Gravel, S. (2017). Inferring the joint demographic history of multiple populations: beyond the diffusion
approximation. Genetics, 206(3), 1549-1567
Vecchyo, O. D., Marsden, C. D., \& Lohmueller, K. E. (2016). PReFerSim: fast simulation of demography and selection under the Poisson Random Field

Stitzer, M. C., Anderson, S. N., Springer, N. M., \& Ross-Ibarra, J. (2021). The genomic
ecosystem of transposable elements in maize. PLoS genetics, $17(10)$ e e1009768.

